
1 Numerical integration
1.1 Introduction
The term numerical integration refers to a broad family of algorithms to compute
a numerical approximation to a definite (Riemann) integral.

Generally, the integral is approximated by a weighted sum of function values
within the domain of integration,∫ b

a

f(x)dx ≈
n∑

i=1

wif(xi) . (1)

Expression (1) is often referred to as quadrature (cubature for multidimensional in-
tegrals) or rule. The abscissas xi (also called nodes) and the weights wi of a quadra-
ture are usually optimized—using one of a large number of different strategies—to
suit a particular class of integration problems.

For a given numerical integration problem the choice of the quadrature algo-
rithm depends on several factors, in particular on the integrand. Different classes
of integrands generally require different quadratures for the most effective calcu-
lation.

A popular numerical integration library is QUADPACK [8]. It includes general
purpose routines—like QAGS, based on an adaptive Gauss–Kronrod quadrature
with acceleration—as well as a number of specialized routines. The GNU scientific
library [2] (GSL) implements most of the QUADPACK routines and in addition
includes a modern general-purpose adaptive routine CQUAD based on Clenshaw-
Curtis quadratures [4].

In the following we shall consider some of the popular numerical integration
algorithms.

1.2 Rectangle and trapezium rules
In mathematics, the Reimann integral is generally defined in terms of Riemann
sums [9]. If the integration interval [a, b] is partitioned into n subintervals,

a = t0 < t1 < t2 < · · · < tn = b . (2)

the Riemann sum is defined as
n∑

i=1

f(xi)∆xi , (3)

where xi ∈ [ti−1, ti] and ∆xi = ti − ti−1. Geometrically a Riemann sum can be
interpreted as the area of a collection of adjucent rectangles with widths ∆xi and
heights f(xi).

The Rieman integral is defined as the limit of a Riemann sum as the mesh—the
length of the largest subinterval—of the partition approaches zero. Specifically, the

1

number denoted as ∫ b

a

f(x)dx (4)

is called the Riemann integral, if for any ϵ > 0 there exists δ > 0 such that for any
partition (2) with max∆xi < δ we have∣∣∣∣∣

n∑
i=1

f(xi)∆xi −
∫ b

a

f(x)dx

∣∣∣∣∣ < ϵ . (5)

A definite integral can be interpreted as the net signed area bounded by the graph
of the integrand.

Now, the n-point rectangle quadrature is simply the Riemann sum (3),∫ b

a

f(x)dx ≈
n∑

i=1

f(xi)∆xi , (6)

where the node xi is often (but not always) taken in the middle of the corresponding
subinterval, xi = ti−1 + 1

2∆xi, and the subintervals are often (but not always)
chosen equal, ∆xi = (b − a)/n. Geometrically the n-point rectangle rule is an
approximation to the integral given by the area of a collection of n adjucent equal
rectangles whose heights are determined by the values of the function (at the
middle of the rectangle).

An n-point trapezium rule uses instead a collection of trapezia fitted under the
graph, ∫ b

a

f(x)dx ≈
n∑

i=1

f(ti−1) + f(ti)

2
∆xi . (7)

Importantly, the trapezium rule is the average of two Riemann sums,
n∑

i=1

f(ti−1) + f(ti)

2
∆xi =

1

2

n∑
i=1

f(ti−1)∆xi +
1

2

n∑
i=1

f(ti)∆xi . (8)

Rectangle and trapezium quadratures both have the important feature of closely
following the very mathematical definition of the integral as the limit of the Rie-
mann sums. Therefore—disregarding the round-off errors—these two rules cannot
fail if the integral exists.

For certain partitions of the interval the rectangle and trapezium rules coincide.
For example, for the nodes

xi = a+ (b− a)
i− 1

2

n
, i = 1, . . . , n (9)

both rules give the same quadrature with equal weights, wi = (b− a)/n,∫ b

a

f(x)dx ≈ b− a

n

n∑
i=1

f

(
a+ (b− a)

i− 1
2

n

)
. (10)

2

Rectangle and trapezium quadratures are rarely used on their own—because of
the slow convergence—but they often serve as the basis for more advanced quadra-
tures, for example adaptive quadratures and variable transformation quadratures
considered below.

1.3 Quadratures with regularly spaced abscissas
A quadrature (1) with n predefined nodes xi has n free parameters: the weights
wi. A set of n parameters can generally be tuned to satisfy n conditions. The
archetypal set of conditions in quadratures is that the quadrature integrates exactly
a set of n functions,

{ϕ1(x), . . . , ϕn(x)} . (11)
This leads to a set of n equations,

n∑
i=1

wiϕk(xi) = Ik

∣∣∣
k=1,...,n

, (12)

where the integrals

Ik
.
=

∫ b

a

ϕk(x)dx (13)

are assumed to be known. Equations (12) are linear in wi and can be easily solved.
Since integration is a linear operation, the quadrature will then also integrate

exactly any linear combination of functions (11).
A popular choice for predefined nodes is a closed set—that is, including the

end-points of the interval—of evenly spaced abscissas,

xi = a+
i− 1

n− 1
(b− a)

∣∣∣
i=1,...,n

. (14)

However, in practice it often happens that the integrand has an integrable singu-
larity at one or both ends of the interval. In this case one can choose an open set
of equidistant nodes,

xi = a+
i− 1

2

n
(b− a)

∣∣∣
i=1,...,n

. (15)

The set of functions to be integrated exactly is generally chosen to suite the
properties of the integrands at hand: the integrands must be well represented by
linear combinations of the chosen functions.

1.3.1 Classical quadratures

Suppose the integrand can be well represented by the first few terms of its Taylor
series,

f(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k , (16)

3

Table 1: Maxima script to calculate analytically the weights of an n-point classical
quadrature with predefined abscissas in the interval [0, 1].

n: 8; xs: makelist((i-1)/(n-1),i,1,n); /* nodes: adapt to your needs */
ws: makelist(concat(w,i),i,1,n);
ps: makelist(x^i,i,0,n-1); /* polynomials */
fs: makelist(buildq([i:i,ps:ps],lambda([x],ps[i])),i,1,n);
integ01: lambda([f],integrate(f(x),x,0,1));
Is: maplist(integ01,fs); /* calculate the integrals */
eq: lambda([f],lreduce("+",maplist(f,xs)*ws));
eqs: maplist(eq,fs)-Is; /* build equations */
solve(eqs,ws); /* solve for the weights */

where f (k) is the k-th derivative of the integrand. This is often the case for
analytic—that is, infinitely differentiable—functions. For such integrands one can
obviously choose polynomials

{1, x, x2, . . . , xn−1} (17)

as the set of functions to be integrated exactly.
This leads to the so called classical quadratures: quadratures with regularly

spaced abscissas and polynomials as exactly integrable functions.
An n-point classical quadrature integrates exactly the first n terms of the func-

tion’s Taylor expansion (16). The xn order term will not be integrated exactly and
will lead to an error of the quadrature. Thus the error En of the n-point classical
quadrature is on the order of the integral of the xn term in (16),

En ≈
∫ b

a

f (n)(a)

n!
(x− a)ndx =

f (n)(a)

(n+ 1)!
hn+1 ∝ hn+1 , (18)

where h = b − a is the length of the integration interval. A quadrature with the
error of the order hn+1 is often called a degree-n quadrature.

If the integrand is smooth enough and the length h is small enough a classical
quadrature with not so large n can provide a good approximation for the integral.
However, for large n the weights of classical quadratures tend to have alternating
signs, which leads to large round-off errors, which in turn negates the potentially
higher accuracy of the quadrature. Again, if the integrand violates the assumption
of Taylor expansion—for example by having an integrable singularity inside the
integration interval—the higher order quadratures may perform poorly.

Classical quadratures are mostly of historical interest nowadays. Alternative
methods—such as quadratures with optimized abscissas, adaptive, and variable
transformation quadratures—are more stable and accurate and are normally pre-
ferred to classical quadratures.

Classical quadratures with equally spaced abscissas—both closed and open
sets—are generally referred to as Newton-Cotes quadratures. An interested reader

4

can generate Newton–-Cotes quadratures of any degree n using the Maxima script
in Table (1).

1.4 Quadratures with optimized abscissas
In quadratures with optimized abscissas not only the weights wi but also the
abscissas xi are chosen optimally. The number of free parameters is thus 2n and
one can choose a set of 2n functions,

{ϕ1(x), . . . , ϕ2n(x)} , (19)

to be integrated exactly. This gives a system of 2n equations, linear in wi and
non-linear in xi,

n∑
i=1

wiϕk(xi) = Ik

∣∣∣
k=1,...,2n

, (20)

where again

Ik
.
=

∫ b

a

ϕk(x)dx . (21)

The weights and abscissas of the quadrature can be determined by solving this
system of equations1.

Although quadratures with optimized abcissas are generally of much higher
order, 2n − 1 compared to n − 1 for non-optimal abscissas, the optimal points
generally can not be reused at the next iteration in an adaptive algorithm.

1.4.1 Gauss quadratures

Gauss quadratures deal with a slightly more general form of integrals,∫ b

a

ω(x)f(x)dx , (23)

where ω(x) is a positive weight function. For ω(x) = 1 the problem is the same
as considered above. Popular choices of the weight function include ω(x) = (1 −
x2)±1/2, exp(−x), exp(−x2) and others. The idea is to represent the integrand as
a product ω(x)f(x) such that all the difficulties go into the weight function ω(x)
while the remaining factor f(x) is smooth and well represented by polynomials.

An N -point Gauss quadrature is a quadrature with optimized abcissas,∫ b

a

ω(x)f(x)dx ≈
N∑
i=1

wif(xi) , (24)

which integrates exactly a set of 2N polynomials of the orders 1, . . . , 2N − 1 with
the given weight ω(x).

1Here is, for example, an n = 2 quadrature with optimized abscissas,∫ 1

−1
f(x)dx ≈ f

(
−
√

1
3

)
+ f

(
+
√

1
3

)
. (22)

5

Fundamental theorem There is a theorem stating that there exists a set of
polynomials pn(x), orthogonal on the interval [a, b] with the weight function ω(x),∫ b

a

ω(x)pn(x)pk(x) ∝ δnk . (25)

Now, one can prove that the optimal nodes for the N -point Gauss quadrature
are the roots of the polynomial pN (x),

pN (xi) = 0 . (26)

The idea behind the proof is to consider the integral∫ b

a

ω(x)q(x)pN (x)dx = 0 , (27)

where q(x) is an arbitrary polynomial of degree less than N . The quadrature
should represent this integral exactly,

N∑
i=1

wiq(xi)pN (xi) = 0 . (28)

Apparently this is only possible if xi are the roots of pN .

Calculation of nodes and weights A neat algorithm—usually refered to as
Golub-Welsch algorithm [3]—for calculation of the nodes and weights of a Gauss
quadrature is based on the symmetric form of the three-term reccurence relation
for orthogonal polynomials,

xpn−1(x) = βnpn(x) + αnpn−1(x) + βn−1pn−2(x) , (29)

where p−1(x)
.
= 0, p1(x)

.
= 1, and n = 1, . . . , N . This reccurence relation can be

written in the matrix form,

xp(x) = Jp(x) + βNpN (x)eN , (30)

where p(x)
.
= {p0(x), . . . , pN−1(x)}T , eN = {0, . . . , 0, 1}T , and the tridiagonal

matrix J — usually refered to as Jacobi matrix or Jacobi operator — is given as

J =

α1 β1

β1 α2 β2

β2 α3 β3

.
βN−1 αN

 . (31)

Substituting the roots xi of pN — that is, the set {xi | pN (xi) = 0} — into the
matrix equation (30) leads to eigenvalue problem for the Jacobi matrix,

Jp(xi) = xip(xi) . (32)

6

Thus, the nodes of an N -point Gauss quadrature (the roots of the polynomial pN)
are the eigenvalues of the Jacobi matrix J and can be calculated by a standard
diagonalization2 routine.

The weights can be obtained considering N integrals,∫ b

a

ω(x)pn(x)dx = δn0

∫ b

a

ω(x)dx , n = 0, . . . , N − 1 . (33)

Applying our quadrature gives the matrix equation,

Pw = e1

∫ b

a

ω(x)dx , (34)

where w
.
= {w1, . . . , wN}T , e1 = {1, 0, . . . , 0}T , and

P
.
=

p0(x1) . . . p0(xN)
p1(x1) . . . p1(xN)
.

pN−1(x1) . . . pN−1(xN)

 . (35)

Equation (34) is linear in wi and can be solved directly. However, if diagonalization
of the Jacobi matrix provided the normalized eigenvectors, the weigths can be
readily obtained using the following method.

The matrix P apparently consists of non-normalized column eigenvectors of the
matrix J. The eigenvectors are orthogonal and therefore PTP is a diagonal matrix
with positive elements. Multiplying (34) by PT and then by (PTP)−1 from the
left gives

w = (PTP)−1PT e1

∫ b

a

ω(x)dx . (36)

From p0(x) = 1 it follows that PT e1 = {1, . . . , 1}T and therefore

wi =
1

(PTP)ii

∫ b

a

ω(x)dx . (37)

Let the matrix V be the set of the normalized column eigenvectors of the matrix
J. The matrix V is then connected with the matrix P through the normalization
equation,

V =
√
(PTP)−1P . (38)

Therefore, again taking into account that p0(x) = 1, equation (37) can be written
as

wi = (V1i)
2

∫ b

a

ω(x)dx . (39)
2A symmetric tridiagonal matrix can be diagonalized very effectively using the QR/RL algo-

rithm.

7

Table 2: An Octave function that calculates the nodes and weights of the N -point
Gauss-Legendre quadrature and then integrates a given function.
function Q = gauss_legendre (f , a , b ,N)
beta = . 5 . / sqrt (1 −(2∗(1:N−1)).^(−2)); % reccurence re la t ion
J = diag (beta , 1) + diag (beta , −1); % Jacobi matrix
[V,D] = eig (J) ; % diagonal i zat ion of J
x = diag (D) ; [x , i] = sort (x) ; % sorted nodes
w = V(1 , i) .^2∗2 ; % weights
Q = w∗ f ((a+b)/2+(b−a)/2∗x)∗(b−a)/2 ; % integra l
endfunction ;

Example: Gauss-Legendre quadrature Gauss-Legendre quadrature deals
with the weight ω(x) = 1 on the interval [−1, 1]. The associated polynomials
are Legendre polynomials Pn(x), hence the name. Their reccurence relation is
usually given as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x) . (40)

Rescaling the polynomials (preserving p0(x) = 1) as
√
2n+ 1Pn(x) = pn(x) (41)

reduces this reccurence relation to the symmetric form (29),

xpn−1(x) =
1

2

1√
1− (2n)−2

pn(x) +
1

2

1√
1− (2(n− 1))−2

pn−2(x) . (42)

Correspondingly, the coefficients in the matrix J are

αn = 0 , βn =
1

2

1√
1− (2n)−2

. (43)

The problem of finding the nodes and the weights of the N -point Gauss-
Legendre quadrature is thus reduced to the eigenvalue problem for the Jacobi
matrix with coefficients (43).

As an illustration of this algorithm Table (2) shows an Octave function which
calculates the nodes and the weights of the N -point Gauss-Legendre quadrature
and then integrates a given function.

1.4.2 Gauss-Kronrod quadratures

Generally, the error of a numerical integration is estimated by comparing the
results from two rules of different orders. However, for ordinary Gauss quadratures
the nodes for two rules of different orders almost never coinside. This means that
one can not reuse the points of the lower order rule when calculating the hihger
order rule.

8

Gauss-Kronrod algorithm [5] remedies this inefficiency. The points inherited
from the lower order rule are reused in the higher order rule as predefined nodes
(with n weights as free parameters), and then m more optimal points are added
(m abscissas and m weights as free parameters). The order of the method is
n + 2m − 1. The lower order rule becomes embedded—that is, it uses a subset
of the nodes—into the higher order rule. On the next iteration the procedure is
repeated.

Patterson [7] has tabulated nodes and weigths for several sequences of embed-
ded Gauss-Kronrod rules.

1.5 Adaptive quadratures
Higher order quadratures suffer from round-off errors as the weights wi generally
have alternating signs. Again, using high order polynomials is dangerous as they
typically oscillate wildly and may lead to Runge’s phenomenon. Therefore, if the
error of the quadrature is yet too large for a quadrature with sufficiently large n,
the best strategy is to subdivide the interval in two and then use the quadrature
on the half-intervals. Indeed, if the error is of the order hk, the subdivision would
lead to reduced error, 2 (h/2)k < hk, if k > 1.

An adaptive quadrature is an algorithm where the integration interval is subdi-
vided into adaptively refined subintervals until the given accuracy goal is reached.

Adaptive algorithms are usually built on pairs of quadrature rules – a higher
order rule,

Q =
∑
i

wif(xi), (44)

where wi are the weights of the higher order rule and Q is the higher order estimate
of the integral, and a lower order rule,

q =
∑
i

vif(xi), (45)

where vi are the weights of the lower order rule and q is the the lower order estimate
of the integral. The difference between the higher order rule and the lower order
rule gives an estimate of the error,

δQ = |Q− q| . (46)

The integration result is accepted, if the error δQ is smaller than tolerance,

δQ < δ + ϵ|Q| , (47)

where δ is the absolute accuracy goal and ϵ is the relative accuracy goal of the
integration.

If the error estimate is larger than tolerance, the interval is subdivided into two
half-intervals and the procedure applies recursively to subintervals with the same
relative accuracy goal ϵ and rescaled absolute accuracy goal δ/

√
2.

9

The points xi are usually chosen such that the two quadratures use the same
points, and that the points can be reused in the subsequent recursive steps. The
reuse of the function evaluations made at the previous step of adaptive integration
is very important for the efficiency of the algorithm. The equally-spaced abscissas
naturally provide for such a reuse.

As an example, Table 3 shows an implementation of the described algorithm
using

xi =

{
1

6
,
2

6
,
4

6
,
5

6

}
(easily reusable points) , (48)

wi =

{
2

6
,
1

6
,
1

6
,
2

6

}
(trapezium rule) , (49)

vi =

{
1

4
,
1

4
,
1

4
,
1

4

}
(rectangle rule) . (50)

During recursion the function values at the points #2 and #3 are inherited from
the previous step and need not to be recalculated.

The points and weights are cited for the rescaled integration interval [0, 1]. The
transformation of the points and weights to the original interval [a, b] is given as

xi → a+ (b− a)xi ,

wi → (b− a)wi . (51)
This implementation calculates directly the Riemann sums and can therefore

deal with integrable singularities, although rather inefficiently.
More efficient adaptive routines keep track of the subdivisions of the interval

and the local errors [4]. This allows detection of singularities and switching in
their vicinity to specifically tuned quadratures. It also allows better estimates of
local and global errors.

Here is an embedded 8-point open quadrature,

xi =

{
1

12
,
2

12
,
4

12
,
5

12
,
7

12
,
8

12
,
10

12
,
11

12

}
, (52)

wi =

{
4738

19845
,
−59

567
,
5869

13230
,
−74

945
, w4, w3, w2, w1

}
, (53)

vi =

{
208

945
,
−7

135
,
209

630
, 0, v4, v3, v2, v1

}
. (54)

1.6 Variable transformation quadratures
The idea behind variable transformation quadratures is to apply the given quad-
rature—either with optimimized or regularly spaced nodes—not to the original
integral, but to a variable transformed integral [6],∫ b

a

f(x)dx =

∫ tb

ta

f
(
g(t)

)
g′(t)dt ≈

N∑
i=1

wif
(
g(ti)

)
g′(ti) , (55)

10

Table 3: Recursive adaptive integrator in Python
def adapt (f , a , b , acc =0.01 , eps =0.01 , f2=math . nan , f3=math . nan) :

f1 = f (a+(b−a)/6)
f4 = f (a+5∗(b−a)/6) ;
i f math . isnan (f2) : # f i r s t c a l l

f2 = f (a+2∗(b−a)/6)
f3 = f (a+4∗(b−a)/6)

Q = (2∗ f1+f2+f3+2∗f4)/6∗(b−a)
q = (f1+f4+f2+f3)/4∗(b−a) ;
to lerance = acc+eps∗abs(Q)
error = abs(Q−q) ;
i f error < tolerance : return Q;
else :

Q1 = adapt (f , a , (a+b)/2 , acc/math . sqrt (2 .) , eps , f1 , f2)
Q2 = adapt (f , (a+b)/2 ,b , acc/math . sqrt (2 .) , eps , f3 , f4)
return Q1+Q2

where the transformation x = g(t) is chosen such that the transformed integral
better suits the given quadrature. Here g′ denotes the derivative and [ta, tb] is the
corresponding interval in the new variable.

For example, the Gauss-Legendre quadrature assumes the integrand can be
well represented with polynomials and performs poorly on integrals with integrable
singularities like

I =

∫ 1

0

1

2
√
x
dx . (56)

However, a simple varibale transformation x = t2 removes the singularity,

I =

∫ 1

0

dt , (57)

and the Gauss-Legendre quadrature for the transformed integral gives exact result.
The price is that the transformed quadrature performs less effectively on smooth
functions.

Some of the popular variable transformation quadratures are Clenshaw-Curtis [1],
based on the transformation∫ 1

−1

f(x)dx =

∫ π

0

f(cos θ) sin θdθ , (58)

and “tanh-sinh” quadrature [6], based on the transformation∫ 1

−1

f(x)dx =

∫ ∞

−∞
f
(
tanh

(π
2
sinh(t)

)) π

2

cosh(t)

cosh2
(
π
2 sinh(t)

)dt . (59)

and another one, ∫ 1

0

f(x)dx =

∫ 1

0

f
(
3t2 − 2t3

)
6(t− t2)dt . (60)

11

Generally, the equally spaced trapezium/rectangle rule is used after the trans-
formation.

1.7 Infinite intervals
One way to calculate an integral over infinite interval is to transform it by a variable
sustitution into an integral over a finite interval. The latter can then be evaluated
by ordinary integration methods. Table 4 lists several of such transformation.

Table 4: Variable transformations reducing infinite interval integrals into integrals
over finite intervals.

∫ +∞

−∞
f(x)dx =

∫ +1

−1

f

(
t

1− t2

)
1 + t2

(1− t2)2
dt , (61)∫ +∞

−∞
f(x)dx =

∫ 1

0

(
f

(
1− t

t

)
+ f

(
−1− t

t

))
dt

t2
, (62)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

t

1− t

)
1

(1− t)2
dt , (63)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

1− t

t

)
dt

t2
, (64)∫ b

−∞
f(x)dx =

∫ 0

−1

f

(
b+

t

1 + t

)
1

(1 + t)2
dt , (65)∫ b

−∞
f(x)dx =

∫ 1

0

f

(
b− 1− t

t

)
dt

t2
. (66)

References
[1] C.W. Clenshaw and A.R. Curtis. A method for numerical integration on an

automatic computer. Numerische Mathematik, 2:197–205, 1960.

[2] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory
Ltd, 3rd edition, 2009.

[3] Gene H. Golub and John H. Welsch. Calculation of Gauss quadrature rules.
Mathematics of Computation, 23(106):221–230, 1969.

[4] Pedro Gonnet. Increasing the reliability of adaptive quadrature using explicit
interpolants. ACM Trans. Math. Soft., 37(3):26:2–26:32, 2010.

12

[5] Aleksandr Semenovich Kronrod. Nodes and weights of quadrature formulas.
Sixteen-place tables. Consultants Bureau, 1965.

[6] Masatake Mori. Quadrature formulas obtained by variable transformation and
the DE–rule. Journal of Computational and Applied Mathematics, 12&13:119–
130, 1985.

[7] T. N. L. Patterson. The optimum addition of points to quadrature formulae.
Mathematics of Computation, 22(104):847–856, 1968.

[8] Robert Piessens, Elise de Doncker-Kapenga, Christoph W. Überhuber, and
David Kahaner. QUADPACK: A subroutine package for automatic integration.
Springer-Verlag, 1983.

[9] B. Riemann. Über die darstellbarkeit einer function durch eine
trigonometrische reihe. Abhandlungen der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen, 13:87–132, 1868.

13

