
1 Interpolation
1.1 Introduction
In practice one often meets a situation where the function of interest, f(x), is only
represented by a discrete set of tabulated points,

{xi, yi
.
= f(xi) | i = 1 . . . n} ,

obtained, for example, by sampling, experimentation, or extensive numerical cal-
culations.

Interpolation means constructing a (smooth) function, called interpolating func-
tion or interpolant, which passes exactly through the given points and hopefully
approximates the tabulated function between the tabulated points. Interpolation
is a specific case of curve fitting in which the fitting function must go exactly
through the data points.

The interpolating function can be used for different practical needs like esti-
mating the tabulated function between the tabulated points and estimating the
derivatives/integrals involving the tabulated function.

1.2 Polynomial interpolation
Polynomial interpolation uses a polynomial as the interpolating function. Given
a table of n points, {xi, yi}, where no two xi are the same, one can construct
a polynomial P (x) of the order n − 1 which passes exactly through the points:
P (xi) = yi. This polynomial can be intuitively written in the Lagrange form,

P (x) =

n∑
i=1

yi

n∏
k ̸=i

x− xk

xi − xk
. (1)

The Lagrange interpolating polynomial always exists and is unique.

Table 1: Polynomial interpolation in C
double pol interp (int n , double ∗x , double ∗y , double z) {

double s=0,p ;
for (int i =0; i<n ; i++) {

p=1; for (int k=0;k<n ; k++) i f (k!= i) p∗=(z−x [k]) / (x [i]−x [k]) ;
s+=y [i]∗p ; }

return s ; }

Higher order interpolating polynomials are susceptible to the Runge’s phe-
nomenon: erratic oscillations close to the end-points of the interval, see Figure 1.

1

−6 −4 −2 0 2 4 6

x

0

0.5

1

y

data points

polynomial

cubic spline

Figure 1: Lagrange interpolating polynomial, solid line, showing the Runge’s phe-
nomenon: large oscillations at the edges. For comparison the dashed line shows a
cubic spline.

1.3 Spline interpolation
Spline interpolation uses a piecewise polynomial, S(x), called spline, as the inter-
polating function,

S(x) = si(x) if x ∈ [xi, xi+1]
∣∣∣
i=1,...,n−1

, (2)

where si(x) is a polynomial of a given order k. Spline interpolation avoids the
problem of Runge’s phenomenon. Originally, “spline” was a term for elastic rulers
that were bent to pass through a number of predefined points. These were used
to make technical drawings by hand.

The spline of the order k ≥ 1 can be made continuous at the tabulated points,

si(xi) = yi , si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

, (3)

together with its k − 1 derivatives,

s′i(xi+1) = s′i+1(xi+1) ,
s′′i (xi+1) = s′′i+1(xi+1) ,

...
s
(k−1)
i (xi+1) = s

(k−1)
i+1 (xi+1) .

∣∣∣∣∣∣∣∣∣ i = 1, . . . , n− 2 (4)

Continuity conditions (3) and (4) make kn + n − 2k linear equations for the
(n− 1)(k + 1) = kn+ n− k − 1 coefficients of n− 1 polynomials (2) of the order
k. The missing k − 1 conditions can be chosen (reasonably) arbitrarily.

2

The most popular is the cubic spline, where the polynomials si(x) are of third
order. The cubic spline is a continuous function together with its first and second
derivatives. The cubic spline has a nice feature that it (sort of) minimizes the total
curvature of the interpolating function. This makes the cubic splines look good.

Quadratic splines—continuous with the first derivative—are not nearly as good
as cubic splines in most respects. In particular they might oscillate unpleasantly
when a quick change in the tabulated function is followed by a period where the
function is nearly a constant. Cubic splines are somewhat less susceptible to such
oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

1.3.1 Linear interpolation

Linear interpolation is a spline with linear polynomials. The continuity conditions
(3) can be satisfied by choosing the spline in the (intuitive) form

si(x) = yi + pi(x− xi) , (5)

where
pi =

∆yi
∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (6)

The linear spline can be easily differentiated,

s′i(x) = pi , (7)

and integrated, ∫ x<xi+1

xi

si(t)dt = yi(x− xi) + pi
(x− xi)

2

2
. (8)

Linear spline is continuous but its derivative is not.

Table 2: Linear interpolation in C
#include<asser t . h>
double l i n t e r p (int n , double∗ x , double∗ y , double z){

as se r t (n>1 && z>=x [0] && z<=x [n−1]);
int i =0, j=n−1; /∗ binary search : ∗/
while (j−i >1){int m=(i+j)/2 ; i f (z>x [m]) i=m; else j=m;}
double dy=y [i+1]−y [i] , dx=x [i+1]−x [i] ; a s se r t (dx>0);
return y [i]+dy/dx∗(z−x [i]) ;

}

Note that the search of the interval [xi ≤ x ≤ xi+1] in an ordered array {xi}
should be done with the binary search algorithm (also called half-interval search):
the point x is compared to the middle element of the array, if it is less than the
middle element, the algorithm repeats its action on the sub-array to the left of the

3

middle element, if it is greater, on the sub-array to the right. When the remaining
sub-array is reduced to two elements, the interval is found (see Table 2). The
average number of operations for a binary search is O(log n).

1.3.2 Quadratic spline

Quadratic spline is made of second order polynomials, conveniently written in the
form

si(x) = yi + pi(x− xi) + ci(x− xi)(x− xi+1)
∣∣∣
i=1,...,n−1

, (9)

which identically satisfies the continuity conditions

si(xi) = yi , si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

. (10)

Substituting (9) into the derivative continuity condition,

s′i(xi+1) = s′i+1(xi+1)
∣∣∣
i=1,...,n−2

, (11)

gives n− 2 equations for n− 1 unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1

∣∣∣
i=1,...,n−2

. (12)

One coefficient can be chosen arbitrarily, for example c1 = 0. The other coef-
ficients can now be calculated recursively from (12),

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi)

∣∣∣
i=1,...,n−2

. (13)

Alternatively, one can choose cn−1 = 0 and make the backward-recursion

ci =
1

∆xi
(pi+1 − pi − ci+1∆xi+1)

∣∣∣
i=n−2,...,1

. (14)

In practice, unless you know what your c1 (or cn−1) is, it is better to run both
recursions and then average the resulting c’s. This amounts to first running the
forward-recursion from c1 = 0 and then the backward recursion from 1

2cn−1.
The optimized form (9) of the quadratic spline can also be written in the

ordinary form suitable for differentiation and integration,

si(x) = yi + bi(x− xi) + ci(x− xi)
2 , where bi = pi − ci∆xi . (15)

An implementation of quadratic spline in C is listed in Table 1.3.2

4

Table 3: Quadratic spline in C
#include <s t d l i b . h>
#include <asser t . h>
typedef struct { int n ; double ∗x , ∗y , ∗b , ∗c ;} qspl ine ;
qsp l ine ∗ qspl ine_al loc (int n , double∗ x , double∗ y){ // bu i ld s qsp l ine

qspl ine ∗s = (qspl ine ∗) malloc (sizeof (qspl ine)) ; // sp l ine
s−>b = (double∗) malloc ((n−1)∗sizeof (double)) ; // b_i
s−>c = (double∗) malloc ((n−1)∗sizeof (double)) ; // c_i
s−>x = (double∗) malloc (n∗sizeof (double)) ; // x_i
s−>y = (double∗) malloc (n∗sizeof (double)) ; // y_i
s−>n = n ; for (int i =0; i<n ; i++){s−>x [i]=x [i] ; s−>y [i]=y [i] ; }
int i ; double p [n−1] , h [n−1]; //VLA from C99
for (i =0; i<n−1; i++){h [i]=x [i+1]−x [i] ; p [i]=(y [i+1]−y [i]) / h [i] ; }
s−>c [0]=0; //recursion up :
for (i =0; i<n−2; i++)s−>c [i +1]=(p [i+1]−p [i]−s−>c [i]∗h [i]) / h [i +1];
s−>c [n−2]/=2; //recursion down:
for (i=n−3; i >=0;i −−)s−>c [i]=(p [i+1]−p [i]−s−>c [i +1]∗h [i +1])/h [i] ;
for (i =0; i<n−1; i++)s−>b [i]=p [i]−s−>c [i]∗h [i] ;
return s ; }

double qspline_eval (qspl ine ∗s , double z){ // evaluates s (z)
asse r t (z>=s−>x [0] && z<=s−>x [s−>n−1]);
int i =0, j=s−>n−1; //binary search :
while (j−i >1){int m=(i+j)/2 ; i f (z>s−>x [m]) i=m; else j=m;}
double h=z−s−>x [i] ;
return s−>y [i]+h∗(s−>b [i]+h∗s−>c [i]) ; }// inerpo lat ing polynomial

void qspl ine_free (qspl ine ∗s){ // free the a l loca ted memory
f r e e (s−>x) ; f r e e (s−>y) ; f r e e (s−>b) ; f r e e (s−>c) ; f r e e (s) ; }

1.3.3 Cubic spline

Cubic splines are made of third order polynomials,

si(x) = yi + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 . (16)

This form automatically satisfies the first half of continuity conditions (3): si(xi) =
yi. The second half of continuity conditions (3), si(xi+1) = yi+1, and the continuity
of the first and second derivatives (4) give a set of equations,

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n− 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n− 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n− 2 (17)

where hi
.
= xi+1 − xi.

The set of equations (17) is a set of 3n − 5 linear equations for the 3(n − 1)
unknown coefficients {ai, bi, ci | i = 1, . . . , n − 1}. Therefore two more equations
should be added to the set to find the coefficients. If the two extra equations are
also linear, the total system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing second

5

derivatives at the end-points,

S′′(x1) = S′′(xn) = 0 , (18)

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (19)

Solving the first two equations in (17) for ci and di gives1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (20)

where pi
.
= ∆yi/hi. The natural conditions (19) and the third equation in (17) then

produce the following tridiagonal system of n linear equations for the n coefficients
bi,

2b1 + b2 = 3p1 ,

bi +

(
2

hi

hi+1
+ 2

)
bi+1 +

hi

hi+1
bi+2 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

,

bn−1 + 2bn = 3pn−1 , (21)

or, in the matrix form,
D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

...
. 0 1 Dn

b1
...
...
bn

 =

B1

...

...
Bn

 (22)

where the elements Di at the main diagonal are

D1 = 2 , Di+1 = 2
hi

hi+1
+ 2

∣∣∣
i=1,...,n−2

, Dn = 2 , (23)

the elements Qi at the above-main diagonal are

Q1 = 1 , Qi+1 =
hi

hi+1

∣∣∣
i=1,...,n−2

, (24)

and the right-hand side terms Bi are

B1 = 3p1 , Bi+1 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

, Bn = 3pn−1 . (25)

1introducing an auxiliary coefficient bn.

6

This system can be solved by one run of Gauss elimination and then a run of
back-substitution. After a run of Gaussian elimination the system becomes

D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

...
. 0 0 D̃n

b1
...
...
bn

 =

B̃1

...

...
B̃n

 , (26)

where
D̃1 = D1 , D̃i = Di −Qi−1/D̃i−1

∣∣∣
i=2,...,n

, (27)

and
B̃1 = B1 , B̃i = Bi − B̃i−1/D̃i−1

∣∣∣
i=2,...,n

. (28)

The triangular system (26) can be solved by a run of back-substitution,

bn = B̃n/D̃n , bi = (B̃i −Qibi+1)/D̃i

∣∣∣
i=n−1,...,1

. (29)

A C-implementation of cubic spline is listed in Table 1.3.3

1.3.4 Sub-splines

Sub-splines are—like splines—piecewise polynomials. However, unlike splines the
sub-splines dispense with the demand of maximal differentiability of the spline—
hence the name. Instead of maximal differentiability the sub-splines use one (or
more) of their free parameters to achieve some other goals. Typically the sub-
splines try to minimize the unpleasant wiggles that splines are prone to when the
interpolated data contain a sub-set of points that are close to a line or an outlier.

Akima sub-spline [1] is an interpolating function in the form of a piecewise
cubic polynomial, similar to the cubic spline,

S(x)
∣∣∣
x∈[xi,xi+1]

= ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 .
= Ai(x) . (30)

However, unlike the cubic spline, Akima sub-spline dispenses with the demand of
maximal differentiability of the spline—in this case, the continuity of the second
derivative—hence the name sub-spline. Instead of achieving maximal differentia-
bility Akima sub-splines try to reduce the wiggling which the ordinary splines are
typically prone to (see Figure 2).

First let us note that the coefficients {ai, bi, ci, di} in eq. (30) are determined by
the values of the derivatives S′

i
.
= S′(xi) of the sub-spline through the continuity

conditions for the sub-spline and its first derivative,

Ai(xi) = yi, A
′
i(xi) = S′

i, Ai(xi+1) = yi+1, A
′
i(xi+1) = S′

i+1. (31)

7

−4 −3 −2 −1 0 1 2 3 4

x

−1

0

1

y

data points

cubic spline

Akima sub-spline

Figure 2: A cubic spline (solid line) showing the typical wiggles, compared to the
Akima sub-spline (dashed line) where the wiggles are essentially removed.

Indeed, inserting (30) into (31) and solving for the coefficients gives

ai = yi, bi = S′
i, ci =

3pi − 2S′
i − S′

i+1

∆xi
, di =

S′
i + S′

i+1 − 2pi

(∆xi)2
, (32)

where pi
.
= ∆yi/∆xi, ∆yi

.
= yi+1 − yi, ∆xi

.
= xi+1 − xi.

In the ordinary cubic spline the derivatives S′
i are determined by the continu-

ity condition of the second derivative of the spline. Sub-splines do without this
continuity condition and can instead use the derivatives as free parameters to be
chosen to satisfy some other condition.

Akima suggested to minimize the wiggling by choosing the derivatives as linear
combinations of the nearest slopes,

S′
i =

wi+1pi−1 + wi−1pi
wi+1 + wi−1

, if wi+1 + wi−1 ̸= 0 , (33)

S′
i =

pi−1 + pi
2

, if wi+1 + wi−1 = 0 , (34)

where the weights wi are given as

wi = |pi − pi−1| . (35)

The idea is that if three points lie close to a line, the sub-spline in this vicinity has
to be close to this line. In other words, if |pi−pi−1| is small, the nearby derivatives
must be close to pi.

The first two and the last two points need a special prescription, for example
(naively) one can simply use

S′
1 = p1, S

′
2 =

1

2
p1 +

1

2
p2, S

′
n = pn−1, S

′
n−1 =

1

2
pn−1 +

1

2
pn−2. (36)

8

Table (5) shows a C-implementation of this algorithm.

1.4 Rational function interpolation
As the name suggests, the rational interpolation uses a rational function (a ratio
of two polynomials) as the interpolant,

rkm(x) =
p0 + p1x+ · · ·+ pkx

k

q0 + q1x+ · · ·+ qmxm
, (37)

where m > 0. The rational interpolants are (generally) not susceptible to Runge
phenomenon and are infinitely differentiable.

One popular family of rational function interpolants is the so called univariate
barycentric interpolation. One example of this can be illustrated as follows. Sup-
pose the table to interpolate contains only two points, (x0, y0) and (x1, y1). Then
the (linear) interpolant can be intuitively written as

F (x) =
x1 − x

x1 − x0
y0 +

x− x0

x1 − x0
y1 . (38)

In order to generalize this approach to larger tables one can rewrite it as

F (x) =
(x− x1)y0 − (x− x0)y1

−(x1 − x0)
=

(x− x1)y0 − (x− x0)y1
(x− x1)− (x− x0)

. (39)

Now we divide both the numerator and denominator by (x− x0)(x− x1),

F (x) =

1

x− x0
y0 −

1

x− x1
y1

1

x− x0
− 1

x− x1

=

1∑
i=0

(−1)i

x− xi
yi

1∑
i=0

(−1)i

x− xi

(40)

Now, the generalization to a table with n+1 points seems as easy as changing the
summation limit from 1 to n (first suggested by Berrut in 1988 [2]),

B1(x) =

n∑
i=0

(−1)i

x− xi
yi

n∑
i=0

(−1)i

x− xi

. (41)

In order to see that B1 indeed goes through the tabulated points we can calculate
the limit,

lim
x→xi

B1(x) =

(−1)i

x− xi
yi

(−1)i

x− xi

= yi . (42)

9

Figure 3: Polynomial interpolant showing the Runge’s phenomenon (large oscilla-
tions at the edges) compared to rational Berrut interpolant where the oscillations
are significantly reduced.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6

data
polynomial
rational B1

y

x

One can show that B1(x) is indeed a rational function (of the order of at most n
by n) by multiplying both the numerator and the denominator by

∏
i(x−xi). One

can also show that B1(x) has no poles on the real axis as the denominator never
vanishes for real arguments. Indeed suppose that x ∈ [x0, x1]. The denominator
is then given as

n∑
i=0

(−1)i

x− xi
=

(
1

x− x0

)
+

(
1

x1 − x
− 1

x2 − x

)
+

(
1

x3 − x
− . . .

)
+ . . . (43)

which is always larger than zero since every term in parentheses is larger than zero
(the proof is similar if x falls in any other sub-interval).

Berrut has also suggested a slightly different rational interpolant,

B2(x) =

1

x− x0
y0 + 2

n−1∑
i=1

(−1)i

x− xi
yi +

(−1)n

x− xn
yn

1

x− x0
+ 2

n−1∑
i=1

(−1)i

x− xi
+

(−1)n

x− xn

. (44)

Berrut interpolants are as slow to evaluate as the Lagrange interpolating polynomial—
O(n) operations—but are more stable, see the illustration on Figure (3).

10

1.5 Multivariate interpolation
Interpolation of a function in more than one variable is called multivariate inter-
polation. The function of interest is represented as a set of discrete points in a
multidimensional space. The points may or may not lie on a regular grid.

1.5.1 Nearest-neighbor interpolation

Nearest-neighbor interpolation approximates the value of the function at a non-
tabulated point by the value at the nearest tabulated point, yielding a piecewise-
constant interpolating function. It can be used for both regular and irregular
grids.

1.5.2 Piecewise-linear interpolation

Piecewise-linear interpolation is used to interpolate functions of two variables tab-
ulated on irregular grids. The tabulated 2D region is triangulated – subdivided
into a set of non-intersecting triangles whose union is the original region. Inside
each triangle the interpolating function S(x, y) is taken in the linear form,

S(x, y) = a+ bx+ cy , (45)

where the three constants are determined by the three conditions that the interpo-
lating function is equal the tabulated values at the three vertexes of the triangle.

1.5.3 Bi-linear interpolation

Bi-linear interpolation is used to interpolate functions of two variables tabulated
on regular rectilinear 2D grids. The interpolating function B(x, y) inside each of
the grid rectangles is taken as a bilinear function of x and y,

B(x, y) = a+ bx+ cy + dxy , (46)

where the four constants a, b, c, d are obtained from the four conditions that the
interpolating function is equal the tabulated values at the four nearest tabulated
points (which are the vertexes of the given grid rectangle).

References
[1] Hiroshi Akima. A new method of interpolation and smooth curve fitting based

on local procedures. Journal of Assoc. for Comp. Mach., 17(4):589–602, 1970.

[2] J.P. Berrut. Rational functions for guaranteed and experimentally well-
conditioned global interpolation. Comput. Math. Appl., 15(1):1–16, 1988.

11

Table 4: Cubic spline in C
#include<s t d l i b . h>
#include<asser t . h>
#include<stdio . h>
typedef struct { int n ; double ∗x ,∗y ,∗b ,∗ c ,∗d ;} cubic_spline ;
cubic_spline∗ cubic_spline_alloc (int n , double ∗x , double ∗y)
{// bu i ld s natural cubic sp l ine

cubic_spline∗ s = (cubic_spline ∗) malloc (sizeof (cubic_spline)) ;
s−>x = (double∗) malloc (n∗sizeof (double)) ;
s−>y = (double∗) malloc (n∗sizeof (double)) ;
s−>b = (double∗) malloc (n∗sizeof (double)) ;
s−>c = (double∗) malloc ((n−1)∗sizeof (double)) ;
s−>d = (double∗) malloc ((n−1)∗sizeof (double)) ;
s−>n = n ; for (int i =0; i<n ; i++){s−>x [i]=x [i] ; s−>y [i]=y [i] ; }
double h [n−1] ,p [n−1]; // VLA
for (int i =0; i<n−1; i++){h [i]=x [i+1]−x [i] ; a s se r t (h [i] >0);}
for (int i =0; i<n−1; i++) p [i]=(y [i+1]−y [i]) / h [i] ;
double D[n] , Q[n−1] , B[n] ; // bui ld ing the tr id iagona l system :
D[0]=2; for (int i =0; i<n−2; i++)D[i +1]=2∗h [i]/h [i +1]+2; D[n−1]=2;
Q[0]=1; for (int i =0; i<n−2; i++)Q[i+1]=h [i]/h [i +1];
for (int i =0; i<n−2; i++)B[i +1]=3∗(p [i]+p [i +1]∗h [i]/h [i +1]);
B[0]=3∗p [0] ; B[n−1]=3∗p [n−2]; //Gauss el imination :
for (int i =1; i<n ; i++){ D[i]−=Q[i −1]/D[i −1]; B[i]−=B[i −1]/D[i −1]; }
s−>b [n−1]=B[n−1]/D[n−1]; //back−subs t i tu t ion :
for (int i=n−2; i >=0;i −−) s−>b [i]=(B[i]−Q[i]∗ s−>b [i +1])/D[i] ;
for (int i =0; i<n−1; i++){

s−>c [i]=(−2∗s−>b [i]−s−>b [i +1]+3∗p [i]) / h [i] ;
s−>d [i]=(s−>b [i]+s−>b [i +1]−2∗p [i]) / h [i]/h [i] ;

}
return s ;

}
double cubic_spline_eval (cubic_spline ∗s , double z){

as se r t (z>=s−>x [0] && z<=s−>x [s−>n−1]);
int i =0, j=s−>n−1;// binary search for the in t e rva l for z :
while (j−i >1){int m=(i+j)/2 ; i f (z>s−>x [m]) i=m; else j=m; }
double h=z−s−>x [i] ; // ca lcu la te the inerpo lat ing sp l ine :
return s−>y [i]+h∗(s−>b [i]+h∗(s−>c [i]+h∗s−>d [i])) ;

}
void cubic_spline_free (cubic_spline ∗s){ // free the a l loca ted memory

f r e e (s−>x) ; f r e e (s−>y) ; f r e e (s−>b) ; f r e e (s−>c) ; f r e e (s−>d) ; f r e e (s) ; }

12

Table 5: Akima sub-spline in C
#include<asser t . h>
#include<s t d l i b . h>
#include<math . h>
typedef struct { int n ; double ∗x ,∗y ,∗b ,∗ c ,∗d ;} akima_spline ;
akima_spline∗ akima_spline_alloc (int n , double ∗x , double ∗y){

asse r t (n>2); double h [n−1] ,p [n−1]; /∗ VLA ∗/
for (int i =0; i<n−1; i++){h [i]=x [i+1]−x [i] ; a s se r t (h [i] >0);}
for (int i =0; i<n−1; i++) p [i]=(y [i+1]−y [i]) / h [i] ;
akima_spline ∗s = (akima_spline ∗) malloc (sizeof (akima_spline)) ;
s−>x = (double∗) malloc (n∗sizeof (double)) ;
s−>y = (double∗) malloc (n∗sizeof (double)) ;
s−>b = (double∗) malloc (n∗sizeof (double)) ;
s−>c = (double∗) malloc ((n−1)∗sizeof (double)) ;
s−>d = (double∗) malloc ((n−1)∗sizeof (double)) ;
s−>n = n ; for (int i =0; i<n ; i++){s−>x [i]=x [i] ; s−>y [i]=y [i] ; }
s−>b [0] =p [0] ; s−>b [1] =(p[0]+p [1]) / 2 ;
s−>b [n−1]=p [n−2]; s−>b [n−2]=(p [n−2]+p [n−3])/2;
for (int i =2; i<n−2; i++){

double w1=fabs (p [i+1]−p [i]) , w2=fabs (p [i −1]−p [i −2]);
i f (w1+w2==0) s−>b [i]=(p [i −1]+p [i]) / 2 ;
else s−>b [i]=(w1∗p [i −1]+w2∗p [i]) / (w1+w2) ;

}
for (int i =0; i<n−1; i++){

s−>c [i]=(3∗p [i]−2∗s−>b [i]−s−>b [i +1])/h [i] ;
s−>d [i]=(s−>b [i+1]+s−>b [i]−2∗p [i]) / h [i]/h [i] ;

}
return s ;

}
double akima_spline_eval (akima_spline ∗s , double z){

as se r t (z>=s−>x [0] && z<=s−>x [s−>n−1]);
int i =0, j=s−>n−1;
while (j−i >1){int m=(i+j)/2 ; i f (z>s−>x [m]) i=m; else j=m;}
double h=z−s−>x [i] ;
return s−>y [i]+h∗(s−>b [i]+h∗(s−>c [i]+h∗s−>d [i])) ;

}
void akima_spline_free (akima_spline ∗s){

f r e e (s−>x) ; f r e e (s−>y) ; f r e e (s−>b) ; f r e e (s−>c) ; f r e e (s−>d) ; f r e e (s) ; }

13

