
1 Ordinary differential equations
1.1 Introduction
Ordinary differential equations (ODE) are generally defined as differential equa-
tions in one variable where the highest order derivative enters linearly. Such equa-
tions invariably arise in many different contexts throughout mathematics (and
science generally) as soon as changes in the system at hand are considered, usually
with respect to variations of certain parameters.

Ordinary differential equations can be generally reformulated as (coupled) sys-
tems of first-order ordinary differential equations,

y′(x) = f(x,y) , (1)

where y′ .
= dy/dx, and the variables y and the right-hand side function f(x,y) are

understood as column-vectors. For example, a second order differential equation
in the form

u′′ = g(x, u, u′) (2)

can be rewritten as a system of two first-order equations, y′1 = y2

y′2 = g(x, y1, y2)
, (3)

using the variable substitution y1 = u, y2 = u′.
In practice ODEs are usually supplemented with boundary conditions which

pick out a certain class or a unique solution of the ODE. In the following we shall
mostly consider the initial value problem: an ODE with the boundary condition
in the form of an initial condition at a given point a,

y(a) = y0 . (4)

The problem is then to find the value of the solution y at some other point b.
Finding a solution to an ODE is often referred to as integrating the ODE.
An integration algorithm typically advances the solution from the initial point

a to the final point b in a number of discrete steps

{x0
.
= a, x1, . . . , xn−1, xn

.
= b}. (5)

An efficient algorithm tries to integrate an ODE using as few steps as possible
under the constraint of the given accuracy goal. For this purpose the algorithm
should continuously adjust the step-size during the integration, using few larger
steps in the regions where the solution is smooth and perhaps many smaller steps
in more treacherous regions.

Typically, an adaptive step-size ODE integrator is implemented as two routines.
One of them—called driver—monitors the local errors and tolerances and adjusts

1

the step-sizes. To actually perform a step the driver calls a separate routine—
the stepper—which advances the solution by one step, using one of the many
available algorithms, and estimates the local error. The GNU Scientific Library,
GSL, implements about a dozen of different steppers and a tunable adaptive driver.

In the following we shall discuss several of the popular driving algorithms and
stepping methods for solving initial-value ODE problems.

1.2 Adaptive step-size control
Let tolerance τ be the maximal accepted error consistent with the required ac-
curacy to be achieved in the integration of an ODE. Suppose the integration is
done in n steps of size hi such that

∑n
i=1 hi = b − a. Under assumption that the

errors at the integration steps are random and statistically uncorrelated, the local
tolerance τi for the step i has to scale as the square root of the step-size,

τi = τ

√
hi

b− a
. (6)

Indeed, if the local error ei on the step i is less than the local tolerance, ei ≤ τi,
the total error E will be consistent with the total tolerance τ ,

E ≈

√√√√ n∑
i=1

e2i ≤

√√√√ n∑
i=1

τ2i = τ

√√√√ n∑
i=1

hi

b− a
= τ . (7)

The current step hi is accepted if the local error ei is smaller than the local
tolerance τi, after which the next step is attempted with the step-size adjusted
according to the following empirical prescription [2],

hi+1 = hi ×
(
τi
ei

)Power

× Safety, (8)

where Power ≈ 0.25 and Safety ≈ 0.95.
If the local error is larger than the local tolerance the step is rejected and a

new step is attempted with the step-size adjusted according to the same prescrip-
tion (8).

One simple prescription for the local tolerance τi and the local error ei to be
used in (8) is

τi = (ϵ∥yi∥+ δ)

√
hi

b− a
, ei = ∥δyi∥ , (9)

where δ and ϵ are the required absolute and relative precision and δyi is the
estimate of the integration error at the step i.

A more elaborate prescription considers components of the solution separately,

(τi)k =
(
ϵ|(yi)k|+ δ

)√ hi

b− a
, (ei)k = |(δyi)k| , (10)

2

Table 1: An implementation of an ODE driver in Python
def dr iver (f , a , ya , b , h=0.125 , acc =0.01 , eps =0.01) :

x=a ; y=ya ; x l i s t =[x] ; y l i s t =[y]
while True :

i f x>=b : return (x l i s t , y l i s t) # return the path
i f x+h>b : h=b−x
(yh , dy) = stepper (f , x , y , h) # stepper returns y(x+h) and δy
to l = (acc+eps∗yh . norm())∗math . sqrt (h/(b−a))
err = dy . norm()
i f err<to l :

x+=h ; y=yh ; x l i s t . append(x) ; y l i s t . append(y)
i f err >0 : h∗=min((t o l / err)∗∗0.25∗0.95 , 2)
else : h∗=2

where the index k runs over the components of the solution. In this case the step
acceptance criterion also becomes component-wise: the step is accepted, if

∀k : (ei)k < (τi)k . (11)

The factor τi/ei in the step adjustment formula (8) is then replaced by
τi
ei

→ min
k

(τi)k
(ei)k

. (12)

Yet another refinement is to include the derivatives y′ of the solution into the
local tolerance estimate, either overall,

τi =
(
ϵα∥yi∥+ ϵβ∥y′

i∥+ δ
)√ hi

b− a
, (13)

or component-wise,

(τi)k =
(
ϵα|(yi)k|+ ϵβ|(y′

i)k|+ δ
)√ hi

b− a
. (14)

The weights α and β are chosen by the user.
Table 1 shows an implementation of the discussed driver in Python.

1.3 Error estimate
In an adaptive step-size algorithm the stepping routine must provide an estimate
of the integration error, upon which the driver bases its strategy to determine the
optimal step-size for a user-specified accuracy goal.

A stepping method is generally characterized by its order : a method has order
p if it can integrate exactly an ODE where the solution is a polynomial of order p.
In other words, for small h the error of the order-p method is O(hp+1).

There are two popular methods to estimate the error: step doubling, where one
compares the results from the full step and from two half-steps, and two-orders
method where one compares the results from steppers of two different orders.

3

1.3.1 Step doubling (Runge’s principle)

For sufficiently small steps the error δy of an integration step for a method
of a given order p can be estimated by comparing the solution yfull_step, ob-
tained with one full-step integration, against a potentially more precise solution,
ytwo_half_steps, obtained with two consecutive half-step integrations,

δy =
yfull_step − ytwo_half_steps

2p − 1
. (15)

where p is the order of the algorithm used. Indeed, if the step-size h is small, we
can assume

δyfull_step = Chp+1 , (16)

δytwo_half_steps = 2C

(
h

2

)p+1

=
Chp+1

2p
, (17)

where δyfull_step and δytwo_half_steps are the errors of the full-step and two half-
steps integrations, and C is an unknown constant. The two can be combined
as

yfull_step − ytwo_half_steps = δyfull_step − δytwo_half_steps

=
Chp+1

2p
(2p − 1) , (18)

from which it follows that

Chp+1

2p
=

yfull_step − ytwo_half_steps

2p − 1
. (19)

One has, of course, to take the potentially more precise ytwo_half_steps as the
approximation to the solution y. Its error is then given as

δytwo_half_steps =
Chp+1

2p
=

yfull_step − ytwo_half_steps

2p − 1
, (20)

which had to be demonstrated. This prescription is often referred to as the Runge’s
principle.

One drawback of the Runge’s principle is that the full-step and the two half-
step calculations generally do not share evaluations of the right-hand side function
f(x,y), and therefore many extra evaluations are needed to estimate the error.

1.3.2 Different orders

An alternative prescription for error estimation is to make the same step-size inte-
gration using two methods of different orders, with the difference between the two
solutions providing the estimate of the error. If the lower order method mostly
uses the same evaluations of the right-hand side function—in which case it is called

4

embedded in the higher order method—the error estimate does not need additional
evaluations.

Predictor-corrector methods are naturally of embedded type: the correction—
which generally increases the order of the method—itself can serve as the estimate
of the error.

1.4 Runge-Kutta steppers
The Runge-Kutta steppers approximate the solution of the differential equation
using polynomials. The coefficients of the polynomials are determined by sampling
the right-hand-side, f(x,y), of the differential equation at certain points (mostly)
within the step.

1.4.1 Linear stepper

The linear approximation is given by the first two terms of the Taylor expansion
of the solution at the point xi,

y(x) ≈ p1(x) = yi + y′
i(x− xi) , (21)

where the derivative y′
i is determined from the equation itself, y′

i = f(x,yi). In
this parlance the values of the derivative are often denoted as k with index, for
example the derivative y′

i is often called k0,

p1(x) = yi + k0(x− xi) . (22)

With this notation the linear Runge-Kutta stepper (called the Euler’s rule) is given
as

k0 = f(x,yi) (23)
yi+1 ≈ p1(x+ h) = yi + k0h . (24)

1.4.2 Quadratic steppers and Butcher tableaux

One can improve upon the p1-approximation by adding a second order term,

y(x) ≈ p2(x) = p1(x) + c(x− xi)
2 , (25)

where the coefficient c can be found by matching the polynomial p2 against our
differential equation at a certain point z within the step,

p′
2(z) = f(z,p1(z)) . (26)

This condition should be viewed in the sense of Taylor expansion, that is why we
used p1 polynomial at the right-hand-side. This gives

c =
f(z,p1(z))− p′

1(z)

2(z − xi)
. (27)

5

One usually identifies the sampling point z by the corresponding fraction of the
step, z = xi + αh. Written with the α the c-coefficient is given as

c =
f(xi + αh,yi + αk0h))− k0

2αh
=

k1 − k0

2αh
, (28)

where
k1

.
= f(xi + αh,yi + αk0h) . (29)

Finally, the second order approximating polynomial is given as

p2(x) = yi + k0(x− xi) + (k1 − k0)
(x− xi)

2

2αh
. (30)

The value of the function at the end of the step, yi+1 ≈ p2(xi + h), is then given
as

yi+1 = yi +

(
1− 1

2α

)
k0h+

1

2α
k1h . (31)

Summarizing, the (generic) second order Runge-Kutta stepper is given as

k0 = f(xi,yi) (32)
k1 = f(xi + αh,yi + αk0h) (33)

yi+1 = yi +

(
1− 1

2α

)
k0h+

1

2α
k1h . (34)

It is customary in this business to represent the Runge-Kutta steppers with the
so called Butcher tableaux which collect the step-sizes and the coefficient of the
polynomials in a table. For example, the Butcher tableau of out generic second
order stepper is given as

step sizes coefficients before ki

k0 0

k1 α α

yi+1

(
1− 1

2α

)
1
2α

(35)

The intermediate step α can be chosen arbitrarily (or from a certain condition)
the stepper is of second order for any α. Following is a list with the most popular
choices of α.

• Midpoint method
0

1/2 1/2

0 1

(36)

6

• Heun’s method
0

1 1

1/2 1/2

(37)

• Ralston’s method
0

2/3 2/3

1/4 3/4

(38)

1.4.3 Cubic approximation

One can further increase the order of the approximating polynomial,

p3(x) = p2(x) + d(x− xi)
3 , (39)

where d can be found from the matching condition at a (possibly) different point
z2 within the step,

p′
3(z2) = f(z2,p2(z2)) . (40)

This gives
d =

f(z2,p2(z2))− p′
2(z2)

3(z2 − xi)2
. (41)

Taking z = xi + βh and denoting

k2
.
= f (z2,p2(z2)) = f

(
xi + βh,yi +

(
β − β2

2α

)
k0h+

β2

2α
k1h

)
(42)

we get

d =
k2 −

(
k0 + (k1 − k0)

β
α

)
3β2h2

, (43)

and

p3(x) = yi + k0(x− xi) +
k1 − k0

2αh
(x− xi)

2

+
k2 −

(
k0 + (k1 − k0)

β
α

)
3β2h2

(x− xi)
3 . (44)

7

This gives the following (generic) cubic Runge-Kutta stepper,

k0 = f(xi,yi) (45)
k1 = f(xi + αh,yi + αk0h) (46)

k2 = f

(
xi + βh,yi +

(
β − β2

2α

)
k0h+

β2

2α
k1h

)
(47)

yi+1 = yi +

(
1− 1

2α
− 1

3β2
+

1

3αβ

)
k0h+

(
1

2α
− 1

3αβ

)
k1h

+

(
1

3β2

)
k1h . (48)

The corresponding Butcher tableau is

0

α α

β β − β2

2α
β2

2α

1− 1
2α − 1

3β2 + 1
3αβ

1
2α − 1

3αβ
1

3β2

(49)

The intermediates steps α and β can be chosen largely arbitrarily. Following is
a list with several popular cubic Runge-Kutta steppers that follow the formulae
from our generic stepper.

• Heun’s third-order method

0

1/3 1/3

2/3 0 2/3

1/4 0 3/4

(50)

• Ralston’s third-order method

0

1/2 1/2

3/4 0 3/4

2/9 1/3 4/3

(51)

8

• 8/15th third-order method

0

8/15 8/15

2/3 1/4 5/12

1/4 0 3/4

(52)

And, in principle, the coefficients in the rows can be also reshuffled somewhat
(preferable shifting the weight to the right) with the condition that the sum of the
coefficients in the row must be equal one.

1.4.4 Higher order steppers

Using this approach one can easily further increase the order of the approximating
polynomial by adding higher powers of (x− xi) and fixing the coefficients in front
by an additional sampling of the right-hand-side at certain points within the step.
This led to a bunch of steppers of different orders with different sampling points.
For example, here is the classic Runge-Kutta fourth-order method,

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

. (53)

One can find a list of different Runge-Kutta methods in Wikipedia.

1.4.5 Embedded methods with error estimates

The embedded Runge-Kutta methods in addition to advancing the solution by one
step also produce an estimate of the local error of the step. This is done by having
two methods in the tableau, one with a certain order p and another one with order
p−1. The difference between the two methods gives the estimate of the local error.
If the lower order method uses the same k-values as the higher order method, it is
called embedded. Embedded methods allow effective estimate of the error without
extra evaluations of the right-hand-side.

Since the embedded rule uses the same k’s the Butcher’s tableau for this kind
of method is simply extended by one row to give the coefficients of the lower order
rule.

9

Table 2: Embedded midpoint/Euler method with error estimate
public static (vector , vector) rkstep12

(Func<double , vector , vector> f , double x , vector y , double h)
{
vector k0 = f (x , y) ; /∗ embedded lower order formula (Euler) ∗/
vector k1 = f (x+h/2 ,y+k0∗(h /2)) ; /∗ higher order formula (midpoint) ∗/
vector yh = y+k1∗h ; /∗ y(x+h) estimate ∗/
vector dy = (k1−k0)∗h ; /∗ error estimate ∗/
return (yh , dy) ;
}

The simplest embedded methods are Heun-Euler method,

0

1 1

1/2 1/2

1 0

, (54)

and midpoint-Euler method,

0

1/2 1/2

0 1

1 0

, (55)

which both combine methods of orders 2 and 1. Table (2) shows a C# implemen-
tation of the embedded midpoint/Euler method with error estimate.

Here is a simple embedded method of orders 2 and 3,

0

1/2 1/2

3/4 0 3/4

2/9 3/9 4/9

0 1 0

, (56)

10

The Bogacki-Shampine method [1] combines methods of orders 3 and 2,

0

1/2 1/2

3/4 0 3/4

1 2/9 1/3 4/9

2/9 1/3 4/9 0

7/24 1/4 1/3 1/8

. (57)

Bogacki and Shampine argue that their method has better stability properties
and actually outperforms higher order methods at lower accuracy goal calculations.
This method has the FSAL—First Same As Last—property: the value k4 at one
step equals k1 at the next step; thus only three function evaluations are needed
per step.

The Runge-Kutta-Fehlberg method [3]—called RKF45—implemented in the
renowned rkf45 Fortran routine, has two methods of orders 5 and 4:

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

1.5 Implicit methods
Instead of the forward Euler method one could employ the backward Euler method
where the derivative is approximated as

y′(x) ≈ y(x)− y(x− h)

h
, (58)

which gives the following (backward Euler) stepper,

yx+h = yx + hf(x+ h, yx+h) . (59)

The backward Euler methods is an implicit method: one has to solve the above
equation to find yx+h. It generally costs time to solve this equation numerically
– a disadvantage as compared to explicit methods. However implicit methods are

11

usually more stable for stiff (difficult) equations where a larger step h can be used
as compared to explicit methods.

Just like with explicit methods one can devise higher-order implicit methods,
for example, the implicit Heun’s method (trapezoidal rule),

yx+h = yx + h
1

2

(
f(x, yx) + f(x+ h, yx+h)

)
. (60)

1.6 Multistep methods
Multistep methods try to use the information about the function gathered at the
previous steps. They are generally not self-starting as there are no previous steps
at the start of the integration. The first step must be done with a one-step method
like Runge-Kutta.

A number of multistep methods have been devised (and named after different
mathematicians); we shall only consider a few simple ones here to get the idea of
how it works.

1.6.1 Two-step method

Given the previous point, (xi−1,yi−1), in addition to the current point (xi,yi),
the sought function y can be approximated in the vicinity of the point xi as a
second order polynomial,

y(x) ≈ p2(x) = yi + y′
i · (x− xi) + c · (x− xi)

2, (61)

where y′
i = f(xi,yi) and the coefficient c can be found from the condition

p2(xi−1) = yi−1 , (62)

which gives
c =

yi−1 − yi + y′
i · (xi − xi−1)

(xi − xi−1)2
. (63)

The value yi+1 of the function at the next point, xi+1
.
= xi + h, can now be

estimated as yi+1 = p2(xi+1) from (61).
The error of this second-order two-step stepper can be estimated by a compar-

ison with the first-order Euler’s step, which is given by the linear part of (61). The
correction term ch2 can serve as the error estimate,

δy = ch2 . (64)

1.6.2 Two-step method with extra evaluation

One can further increase the order of the approximation (61) by adding a third
order term,

y(x) ≈ p3(x) = p2(x) + d · (x− xi)
2(x− xi−1) . (65)

12

The coefficient d can be found from the matching condition at a certain point t
inside the interval,

p′
3(t) = f(t,p2(t)) , (66)

where xi < t < xi + h. This gives

d =
f(t,p2(t))− y′

i − 2c · (t− xi)

2(t− xi)(t− xi−1) + (t− xi)2
. (67)

The error estimate at the point xi+1
.
= x0 + h is again given as the difference

between the higher and the lower order methods,

δy = p3(xi+1)− p2(xi+1) . (68)

1.7 Predictor-corrector methods
A predictor-corrector method uses extra iterations to improve the solution. It is
an algorithm that proceeds in two steps. First, the predictor step calculates a
rough approximation of y(x + h). Second, the corrector step refines the initial
approximation. Additionally the corrector step can be repeated in the hope that
this achieves an even better approximation to the true solution.

For example, the two-point Runge-Kutta method (??) is as actually a predictor-
corrector method, as it first calculates the prediction ỹi+1 for y(xi+1),

ỹi+1 = yi + hf(xi,yi) , (69)

and then uses this prediction in a correction step,

ˇ̃yi+1 = yi + h
1

2
(f(xi,yi) + f(xi+1, ỹi+1)) . (70)

1.7.1 Two-step method with correction

Similarly, one can use the two-step approximation (61) as a predictor, and then
improve it by one order with a correction step, namely

ˇ̄y(x) = ȳ(x) + ď · (x− xi)
2(x− xi−1). (71)

The coefficient ď can be found from the condition ˇ̄y′(xi+1) = f̄i+1, where f̄i+1
.
=

f(xi+1, ȳ(xi+1)),

ď =
f̄i+1 − y′

i − 2c · (xi+1 − xi)

2(xi+1 − xi)(xi+1 − xi−1) + (xi+1 − xi)2
. (72)

Equation (71) gives a better estimate, yi+1 = ˇ̄y(xi+1), of the sought function
at the point xi+1. In this context the formula (61) serves as predictor, and (71) as
corrector. The difference between the two gives an estimate of the error.

This method is equivalent to the two-step method with an extra evaluation
where the extra evaluation is done at the full step.

13

References
[1] Przemyslaw Bogacki and Lawrence F. Shampine. A 3(2) pair of Runge–Kutta

formulas. Applied Mathematics Letters, 2(4):321–325, 1989.

[2] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory
Ltd, 3rd edition, 2009.

[3] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with step size con-
trol and their application to some heat transfer problems. NASA Technical
Report, 1969.

14

