←to practical programming

Homework "Recursive Adaptive Integration"

  1. (6 points) Recursive open 4-point adaptive integrator

    Implement a recursive open-quadrature adaptive integrator that estimates the integral of a given function f(x) on a given interval [a,b] with the required absolute, acc, or relative, eps, accuracy goals.

    The integrator has to use a higher order quadrature to estimate the integral and an imbedded (that is, using the same function evaluations) lower order quadrature to estimate the local error.

    Something like

    static double integrate(Func<double,double> f, double a, double b,
    double acc=0.001, double eps=0.001, double f2=NaN, double f3=NaN) // NaN indicates first call
    {
    double h=b-a;
    if(IsNaN(f2)){ f2=f(a+2*h/6); f3=f(a+4*h/6); } // first call, no points to reuse
    double f1=f(a+h/6), f4=f(a+5*h/6);
    double Q = (2*f1+f2+f3+2*f4)/6*(b-a); // higher order rule
    double q = (  f1+f2+f3+  f4)/4*(b-a); // lower order rule
    double err = |Q-q|;
    if (err ≤ acc+eps*|Q|) return Q;
    else return integrate(f,a,(a+b)/2,acc/√2,eps,f1,f2)+
                integrate(f,(a+b)/2,b,acc/√2,eps,f3,f4);
    }
    

    Reuse of points is of utmost importance for the effectiveness of the algorithm.

    Test your implementation on some interesting integrals, for example (check the expressions before using),

    01 dx √(x) = 2/3 ,
    01 dx 1/√(x) = 2 ,
    ∫01 dx √(1-x²) = π/2 ,
    ∫01 dx ln(x)/√(x) = -4
    

    Check that your integrator returns results within the given accuracy goals.

    Using your integrator implement the error function via its integral representation,

             | -erf(-z)                           , if z<0
    erf(z) = | 2/√π 0z dx exp(-x²)                 , if 0≤z≤1
             | 1-2/√π 01 dt exp(-(z+(1-t)/t)²)/t/t , if 1<z
    
    make a plot and compare with the tabulated values.

    According to a chatbot

     erf(1) = 0.84270079294971486934 
    Now, calculate erf(1) with your routine using eps=0 and decreasing acc=0.1, 0.01, 0.001, …  (or something like this). Plot (in log-log scale) the (absolute value of the) difference between your result and the exact result as function of acc.
  2. (3 points) Variable transformation quadratures

    • Inplement an (open quandrature) adaptive integrator with the Clenshaw–Curtis variable transformation,

    -11 f(x)dx = ∫0π f(cos(θ))sinθdθ  
    
    abdx f(x) = ∫0πdθ f( (a+b)/2+(b-a)/2*Cos(θ) )*Sin(θ)*(b-a)/2
    

    • Calculate some integrals with integrable divergencies at the end-points of the intervals; record the number of integrand evaluations; compare with your ordinary integrator without variable transformation. For example,

     01 dx 1/√(x) = 2 ,
     01 dx ln(x)/√(x) = -4 .
    

    • Compare the number of integrand evaluations with the python/numpy's integration routines.

    • Generalize your integrator to accept infinite limits. An infinite limit integral can be converted by a variable transformation (see lecture notes) into a finite limit integral, which can then be evaluated by your Clenshaw-Curtis integrator.

    Hints: double.PositiveInfinity, IsInfinity, IsNegativeInfinity, IsPositiveInfinity.

    • Test your implementation on some (converging) infitine limit integrals and note the number of integrand evaluations.

    • Compare with the python/numpy integration routines.

    Hint:

    int ncalls=0;
    Func<double,double> f = z => {ncalls++;return z*z;};
    
  3. (1 point) Error estimate

    Make your integrator estimate and return the integration error.

    Something like

    err=|Q-q|
    if(err ≤ tol) return (Q,err);
    else{
    	(Q1,err1)=adapt(...);
    	(Q2,err2)=adapt(...);
    	return (Q1+Q2,Sqrt(err1*err1+err2*err2));
    	}
    

    Investigate the quality of this error estimate by calculating some difficult intergrals and comparing the estimated error with the actual error.